f1(c2(s1(x), y)) -> f1(c2(x, s1(y)))
f1(c2(s1(x), s1(y))) -> g1(c2(x, y))
g1(c2(x, s1(y))) -> g1(c2(s1(x), y))
g1(c2(s1(x), s1(y))) -> f1(c2(x, y))
↳ QTRS
↳ DependencyPairsProof
f1(c2(s1(x), y)) -> f1(c2(x, s1(y)))
f1(c2(s1(x), s1(y))) -> g1(c2(x, y))
g1(c2(x, s1(y))) -> g1(c2(s1(x), y))
g1(c2(s1(x), s1(y))) -> f1(c2(x, y))
F1(c2(s1(x), s1(y))) -> G1(c2(x, y))
F1(c2(s1(x), y)) -> F1(c2(x, s1(y)))
G1(c2(x, s1(y))) -> G1(c2(s1(x), y))
G1(c2(s1(x), s1(y))) -> F1(c2(x, y))
f1(c2(s1(x), y)) -> f1(c2(x, s1(y)))
f1(c2(s1(x), s1(y))) -> g1(c2(x, y))
g1(c2(x, s1(y))) -> g1(c2(s1(x), y))
g1(c2(s1(x), s1(y))) -> f1(c2(x, y))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
F1(c2(s1(x), s1(y))) -> G1(c2(x, y))
F1(c2(s1(x), y)) -> F1(c2(x, s1(y)))
G1(c2(x, s1(y))) -> G1(c2(s1(x), y))
G1(c2(s1(x), s1(y))) -> F1(c2(x, y))
f1(c2(s1(x), y)) -> f1(c2(x, s1(y)))
f1(c2(s1(x), s1(y))) -> g1(c2(x, y))
g1(c2(x, s1(y))) -> g1(c2(s1(x), y))
g1(c2(s1(x), s1(y))) -> f1(c2(x, y))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
F1(c2(s1(x), s1(y))) -> G1(c2(x, y))
Used ordering: Polynomial Order [17,21] with Interpretation:
F1(c2(s1(x), y)) -> F1(c2(x, s1(y)))
G1(c2(x, s1(y))) -> G1(c2(s1(x), y))
G1(c2(s1(x), s1(y))) -> F1(c2(x, y))
POL( s1(x1) ) = x1 + 1
POL( G1(x1) ) = x1
POL( c2(x1, x2) ) = max{0, x1 + x2 - 1}
POL( F1(x1) ) = x1 + 1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
F1(c2(s1(x), y)) -> F1(c2(x, s1(y)))
G1(c2(x, s1(y))) -> G1(c2(s1(x), y))
G1(c2(s1(x), s1(y))) -> F1(c2(x, y))
f1(c2(s1(x), y)) -> f1(c2(x, s1(y)))
f1(c2(s1(x), s1(y))) -> g1(c2(x, y))
g1(c2(x, s1(y))) -> g1(c2(s1(x), y))
g1(c2(s1(x), s1(y))) -> f1(c2(x, y))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
F1(c2(s1(x), y)) -> F1(c2(x, s1(y)))
f1(c2(s1(x), y)) -> f1(c2(x, s1(y)))
f1(c2(s1(x), s1(y))) -> g1(c2(x, y))
g1(c2(x, s1(y))) -> g1(c2(s1(x), y))
g1(c2(s1(x), s1(y))) -> f1(c2(x, y))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
F1(c2(s1(x), y)) -> F1(c2(x, s1(y)))
POL( F1(x1) ) = max{0, x1 - 1}
POL( s1(x1) ) = x1 + 1
POL( c2(x1, x2) ) = x1 + 1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
f1(c2(s1(x), y)) -> f1(c2(x, s1(y)))
f1(c2(s1(x), s1(y))) -> g1(c2(x, y))
g1(c2(x, s1(y))) -> g1(c2(s1(x), y))
g1(c2(s1(x), s1(y))) -> f1(c2(x, y))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
G1(c2(x, s1(y))) -> G1(c2(s1(x), y))
f1(c2(s1(x), y)) -> f1(c2(x, s1(y)))
f1(c2(s1(x), s1(y))) -> g1(c2(x, y))
g1(c2(x, s1(y))) -> g1(c2(s1(x), y))
g1(c2(s1(x), s1(y))) -> f1(c2(x, y))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
G1(c2(x, s1(y))) -> G1(c2(s1(x), y))
POL( s1(x1) ) = x1 + 1
POL( c2(x1, x2) ) = x2 + 1
POL( G1(x1) ) = max{0, x1 - 1}
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
f1(c2(s1(x), y)) -> f1(c2(x, s1(y)))
f1(c2(s1(x), s1(y))) -> g1(c2(x, y))
g1(c2(x, s1(y))) -> g1(c2(s1(x), y))
g1(c2(s1(x), s1(y))) -> f1(c2(x, y))